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SUMMARY

The aim of this review is to provide a comprehensive update on
the current classification and identification of Haemophilus and
Aggregatibacter species with exclusive or predominant host speci-
ficity for humans. Haemophilus influenzae and some of the other
Haemophilus species are commonly encountered in the clinical
microbiology laboratory and demonstrate a wide range of patho-
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genicity, from life-threatening invasive disease to respiratory in-
fections to a nonpathogenic, commensal lifestyle. New species of
Haemophilus have been described (Haemophilus pittmaniae and
Haemophilus sputorum), and the new genus Aggregatibacter was
created to accommodate some former Haemophilus and Actino-
bacillus species (Aggregatibacter aphrophilus, Aggregatibacter seg-
nis, and Aggregatibacter actinomycetemcomitans). Aggregatibacter
species are now a dominant etiology of infective endocarditis
caused by fastidious organisms (HACEK endocarditis), and A.
aphrophilus has emerged as an important cause of brain abscesses.
Correct identification of Haemophilus and Aggregatibacter species
based on phenotypic characterization can be challenging. It has
become clear that 15 to 20% of presumptive H. influenzae isolates
from the respiratory tracts of healthy individuals do not belong to
this species but represent nonhemolytic variants of Haemophilus
haemolyticus. Due to the limited pathogenicity of H. haemolyticus,
the proportion of misidentified strains may be lower in clinical
samples, but even among invasive strains, a misidentification rate
of 0.5 to 2% can be found. Several methods have been investigated
for differentiation of H. influenzae from its less pathogenic
relatives, but a simple method for reliable discrimination is not
available. With the implementation of identification by
matrix-assisted laser desorption ionization–time of flight mass
spectrometry, the more rarely encountered species of Haemo-
philus and Aggregatibacter will increasingly be identified in
clinical microbiology practice. However, identification of some
strains will still be problematic, necessitating DNA sequencing of
multiple housekeeping gene fragments or full-length 16S rRNA
genes.

INTRODUCTION

Among the species of Haemophilus and Aggregatibacter ad-
dressed in this review, Haemophilus influenzae is clearly the

most important human pathogen. The history of this bacterium is
fascinating, as it has been involved in major medical and scientific
achievements, sometimes incidentally. As indicated by its name,
the bacterium has also been implicated in major misconceptions.
When the world was suffering from pandemic influenza in 1889
and 1890, bacteriologists were vigorously pursuing the causative
agent of the disease. The news of the discovery of the influenza
bacillus by Richard Pfeiffer was a sensation, and a preliminary
report was published simultaneously in January 1892 in German,
English, and French medical journals (1). The investigation of the
influenza bacillus was hampered by the difficulty of growing it on
laboratory media. When it grew, it did so in minute, pinpoint-size
colonies that could easily be overlooked or overgrown by other
bacteria present in the sample. When Alexander Fleming discov-
ered penicillin, he also observed the relative nonsusceptibility of
the influenza bacillus. Penicillin-containing agars could therefore
be used as selective media to increase the recovery of the micro-
organism, and Fleming promulgated this use in the title of his
pioneering paper from 1929: “On the antibacterial action of cul-
tures of a Penicillium, with special reference to their use in the
isolation of B. influenzae” (2). A few years later, the discovery of
the influenza virus rendered this particular use of penicillin less
important (3). Seminal events in the chronicle of H. influenzae are
listed in Table 1.

Louis Pasteur’s work with the causative agent of fowl cholera,
Pasteurella multocida, preceded Pfeiffer’s discovery of H. influen-
zae (4). The bacterial family proposed in 1979 to accommodate

the genera Pasteurella, Actinobacillus, and Haemophilus was con-
sequently designated Pasteurellaceae (5). The family, which had
expanded to 18 genera by 2012, encompasses strictly commensal
organisms as well as opportunistic pathogenic species of consid-
erable medical and veterinary importance. These bacteria colonize
mucosal surfaces of humans and animals, and most species exhibit
a strong association with specific hosts. Before the advent of mo-
lecular methods of identification, new species were allocated to
the three classical genera based on relatively few, critical pheno-
typic markers. Species dependent on particular growth factors in
blood belonged to the genus Haemophilus, while species without
this dependence were classified with Pasteurella or Actinobacillus.
By this definition, Haemophilus circumscribed bacterial species
cultured from humans and various animals, and it emerged as a
very heterogenous genus with the advent of molecular methods
(6). Beginning with the transfer in 1983 of Haemophilus pleu-
ropnemoniae to the genus Actinobacillus, as Actinobacillus pleuro-
pneumoniae (7), six former Haemophilus species have now been
classified with other genera within the family Pasteurellaceae (Ta-
ble 2). Currently, there are four Haemophilus species with host
specificity for animals: Haemophilus felis, Haemophilus haemoglo-
binophilus, Haemophilus paracuniculus, and Haemophilus para-
suis. It is plausible that these will be reclassified in the future, and
they are not dealt with further in this review.

The genus Aggregatibacter was created in 2006 to accommo-
date Actinobacillus actinomycetemcomitans, Haemophilus aphro-
philus, and Haemophilus segnis; these species were only distantly
related to the type species of their former genera but were suffi-
ciently related to each other to warrant creation of a new genus (8).
Recently, Aggregatibacter actinomycetemcomitans was isolated
from different Old World nonhuman primates (9), and the ge-
nome of a strain cultured from a rhesus macaque has been se-
quenced (10). Furthermore, 16S rRNA gene sequences with high
similarity to Aggregatibacter segnis have been cloned from the ca-
nine oral microbiome (11). Thus, the human host specificity of
the Aggregatibacter genus is not absolute.

Few species of Pasteurellaceae other than Haemophilus and Ag-
gregatibacter species exhibit host specificity for humans. Actinoba-
cillus ureae and Actinobacillus hominis are commensals of the oro-
pharynx and upper respiratory tract (12) that occasionally cause
infections in patients with underlying diseases. The most commonly

TABLE 1 Seminal events in the history of Haemophilus influenzae

Date Event Reference

1893 Pfeiffer publishes the discovery of the
influenza bacillus

19

1917 Genus Haemophilus is created, with type
species Haemophilus influenzae

297

1921 Thjötta and Avery differentiate two separate
growth factors present in blood

22

1929 Alexander Fleming describes penicillin as a
means of isolating H. influenzae

2

1931 Margaret Pittman describes capsulation and
the association of type b with meningitis

50

1935 Influenza virus is discovered 3
1980s H. influenzae serotype b vaccination is

implemented in many parts of the world
1995 H. influenzae becomes the first free-living

organism to have its genome sequenced
41
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reported infection with A. ureae is meningitis (13), while A. hominis is
seen mainly as the cause of pulmonary infections (14). Pasteurella
bettyae is a commensal of the genitourinary tract and has been iso-
lated from human Bartholin gland abscesses, urine, and finger infec-
tions (15, 16). The ecology and significance of these bacteria have
received little attention (12), and infections are probably underre-
ported (14). P. multocida shows host specificity for various domes-
ticated animals but can cause severe human infections after intro-
duction into wounds by bites or licks (17, 18). Phenotypic
characteristics of A. ureae, A. hominis, P. bettyae, and P. multocida
are included in Table 3, but otherwise these species are not con-
sidered further in this review. Figure 1 shows a DNA sequence-
based phylogenetic comparison of the nine Haemophilus and
three Aggregatibacter species that are covered in the present
review.

In addition to descriptions of new species and a new genus, the
merger and renaming of other species in the Haemophilus and
Aggregatibacter genera have resulted in the obsolescence of previ-
ously familiar names. Fortunately, certain issues have become
simpler, such as the crystallization of the genus Aggregatibacter as
a group of bacteria associated predominantly with humans. A re-
organization of the genus Haemophilus may ultimately end with a
similar delineation. DNA sequencing is increasingly used for iden-

TABLE 2 Former species of Haemophilus transferred to other genera

Former name Event Reference

H. aphrophilus Transferred to genus Aggregatibacter 8
H. avium Transferred to genus Avibacterium 33, 298
H. paragallinarum Transferred to genus Avibacterium 33
H. paraphrophilus Later heterotypic synonym of H.

aphrophilus (transferred to genus
Aggregatibacter)

8

H. pleuropneumoniae Transferred to genus Actinobacillus 7
H. segnis Transferred to genus Aggregatibacter 8

TABLE 3 Selected phenotypic characters for differentiation of Pasteurellaceae species isolated from humansa

Character

Phenotype

Haemophilus sp.
Aggregatibacter
sp.

Actinobacillus
sp.

Pasteurella
sp.

infl aegy haem pinf phae pphae sput pitt ducr acti aphr segn homi ureae bett mult

Porphyrin synthesis (X factor not required) 0 0 0 � � � � � 0 � � � � � � �
NadV synthesis (V factor not required) 0 0 0 0 0 0 0 0 � � d 0 � � � �
Catalase � � � d d d d d 0 � 0 d � d 0 �
Hemolysis 0 0 � d � � � � d 0b 0 0 0 0 0 0
�-Galactosidase 0 0 0 d 0 � � � 0 0 � d � 0 0 0
Tryptophanase d 0 d d 0 0 0 0 0 0 0 0 0 0 � �
Urease d � � d � � � 0 0 0 0 0 � � 0 0
ODC d 0 0 d 0 0 0 0 0 0 0 0 0 0 0 �

Acid from:
Sucrose 0 0 0 � � � � � 0 0 � w � � 0 �
Mannose 0 0 0 � 0 0 0 � 0 d � w d d d �
Lactose 0 0 0 0 0 0 0 0 0 0 � 0 � 0 0 0

IgA1 protease � � 0 0 � 0 0 0 0 0 0 0 0 0 0 0
a Interpretations: �, positive; 0, negative; d, variable; w, weak or delayed reaction. Abbreviations: infl, H. influenzae; aegy, H. aegyptius; haem, H. haemolyticus; pinf, H.
parainfluenzae; phae, H. parahaemolyticus; pphae, H. paraphrohaemolyticus; sput, H. sputorum; pitt, H. pittmaniae; ducr, H. ducreyi; acti, A. actinomycetemcomitans; aphr, A.
aphrophilus; segn, A. segnis; homi, A. hominis; bett, P. bettyae; mult, P. multocida; ODC, ornithine decarboxylase; IgA1, immunoglobulin A1.
b Isolates with overexpression of leukotoxin may exhibit a zone of hemolysis (272).

FIG 1 Genetic relationships of Haemophilus and Aggregatibacter species,
using Escherichia coli as an outgroup. Concatenated sequences of near-full-
length 16S rRNA genes (1,361 to 1,364 nt) plus fragments of three housekeep-
ing genes, infB, pgi, and recA (1,293 nt), were compared by the neighbor-
joining method (36, 99). The dendrogram is based on type strains of validated
species, except for H. ducreyi, where strain 35000HP was used (GenBank ac-
cession no. AE017143). Strain CCUG 11096 represents the not validly named
species H. intermedius. Bar, 2 substitutions per 100 nucleotides.
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tification and typing, and matrix-assisted laser desorption ioniza-
tion–time of flight (MALDI-TOF) mass spectrometry holds
promise for revolutionizing routine identification in the clinical
microbiology laboratory.

The aim of this review is to provide a comprehensive update on
current classification and identification methods for Haemophilus
and Aggregatibacter species. Particular emphasis is put on the dif-
ficult differentiation of H. influenzae from Haemophilus haemo-
lyticus and related organisms. The clinical significance of Haemo-
philus and Aggregatibacter is reviewed briefly, with a focus on the
consequences of recent taxonomic rearrangements, in addition to
an update on the association of particular species with various
clinical syndromes. A number of pertinent reviews are listed for
more in-depth information on general aspects of the clinical sig-
nificance of these organisms.

GROWTH FACTOR DEPENDENCE OF HAEMOPHILUS AND
AGGREGATIBACTER

Two defective metabolic pathways result in dependence on spe-
cific growth factors that are traditionally referred to as X (heme)
and V (NAD), and this dependence has played a major role in the
etymology and delineation of Haemophilus (Gr. haima, blood; Gr.
philus, friend, lover; Haemophilus, the blood lover). Richard
Pfeiffer succeeded in culturing the “influenza bacillus” by inclu-
sion of blood in the growth medium and, furthermore, showed
that hemoglobin was the essential constituent of the blood (19). A
few years later, Grassberger confirmed the necessity of hemoglo-
bin for propagation of the influenza bacillus, but he also noticed
the luxurious growth around colonies of other bacteria plated on
the medium (20). The latter accessory factor could be supplied by
plant or animal tissue and was destroyed by autoclaving (21). In
1921, Thjötta and Avery finally coined the terms V factor, for the
vitamin-like, heat-labile substance, and X factor, for the less-de-
fined, heat-stable substance associated with hemoglobin and act-
ing in minute amounts (22). Although these specific growth fac-
tors are no longer decisive taxonomic criteria, they continue to be
phenotypic traits of great practical importance.

X Factor and Biosynthesis of Heme

The heme biosynthetic pathway is common to animals, plants,
and bacteria, irrespective of whether the final end product is cyto-
chrome, hemoglobin, or chlorophyll, and lack of the ability to
synthesize heme is rare in biology (23). The formation of proto-
porphyrin begins with the condensation of two linear �-aminole-
vulinic acid molecules into the five-membered pyrrole ring, por-
phobilinogen. Four porphobilinogen molecules condense and
circularize into uroporphyrinogen III, which is modified by side
chain substitutions in successive enzymatic steps. Finally, proto-
heme is formed from protoporphyrin by chelation of ferrous iron.
The genome of H. influenzae encodes ferrochelatase (hemH), and
protoporphyrin is the minimal biochemical equivalent of X factor
(24, 25); occasional strains fail to synthesize protoheme from pro-
toporphyrin, and then protoheme is the minimal equivalent of X
factor (26, 27). For many years, the main obstacles to the devel-
opment of a satisfactory classification and identification scheme
for Haemophilus were methodological problems with identifica-
tion of the X factor requirement (28).

V Factor and Biosynthesis of NAD

Studies in Enterobacteriaceae have shown that more than 20 pro-
teins are involved in the biosynthesis, recycling, and uptake of
NAD. NAD is synthesized by a de novo pathway and by the pyri-
dine salvage pathway, which recycles degradative products of
NAD back to NAD (29). In contrast, the reduced set of processes
in Pasteurellaceae is restricted to uptake of NAD (30), and all Pas-
teurellaceae organisms acquire this essential nutrient from their
environment, either as NAD or as a limited number of NAD pre-
cursors. However, some species of Pasteurellaceae are capable of
utilizing nicotinamide in a reaction catalyzed by the enzyme nic-
otinamide phosphoribosyltransferase (NadV) (Fig. 2). As ample
nicotinamide is present in complex media, such isolates do not
show a dependence on V factor in the laboratory. Growth media
without nicotinamide can be prepared, and on such media, all
Pasteurellaceae organisms will exhibit dependence on V factor
(31).

The current definition of V factor dependence is therefore syn-
onymous with the absence of the enzyme NadV. With Aggregati-
bacter aphrophilus, some isolates are dependent on V factor (for-
merly Haemophilus paraphrophilus), while others are not
(formerly Haemophilus aphrophilus). V-factor-dependent strains
carry a nadV pseudogene, and in strains competent for transfor-
mation, the V-factor-dependent phenotype is naturally reversible
by transfer of the intact nadV gene (8). V-factor-dependent and
-independent biovars have also been documented for Actinobacil-
lus pleuropneumoniae (7), Haemophilus parainfluenzae (32), and
Avibacterium paragallinarum (33, 34). Dependence on V factor is
therefore not a crucial character for identification and classifica-

FIG 2 NAD utilization in Pasteurellaceae. Nicotinamide mononucleotide
(NMN) and NAD enter the periplasm through the general porin OMP P2 and
are degraded to nicotinamide riboside (NR); exogenous NR probably enters
the periplasm through a different porin (293). NR is internalized through a
cytosolic membrane-located permease (PnuC) and serves as the substrate for a
resynthesizing enzyme which uses ATP to generate NAD. Nicotinamide
(Nam) freely diffuses through the cell membranes and can serve as the sub-
strate for those members of the family that express a functional nicotinamide
phosphoribosyltransferase (NadV). (Based on reference 30.)
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tion of Pasteurellaceae species, as occasional strains may give ab-
errant results. Nevertheless, V factor dependence is a highly valu-
able test in the initial characterization of presumptive members of
Pasteurellaceae.

THE GENUS HAEMOPHILUS

Nine validly described species of the genus Haemophilus demon-
strate host specificity for humans. They may be divided into three
groups that share certain phenotypic traits: the H. influenzae
group, consisting of the three X-factor-dependent species, i.e., H.
influenzae, Haemophilus aegyptius, and H. haemolyticus; the H.
parainfluenzae group, consisting of the five X-factor-independent
species, i.e., H. parainfluenzae, Haemophilus parahaemolyticus,
Haemophilus paraphrohaemolyticus, Haemophilus pittmaniae, and
Haemophilus sputorum; and a group encompassing only Haemo-
philus ducreyi. Phenotypic characteristics differentiating the nine
described species of Haemophilus from other Pasteurellaceae spe-
cies are shown in Table 3.

The Haemophilus influenzae Group

The salient characteristic of the Haemophilus influenzae group is a
deficient heme biosynthetic pathway resulting in X-factor-depen-
dent growth in vitro. Occasional heme-synthesizing strains have
been documented (“Haemophilus intermedius subsp. interme-
dius”) (35); it has been suggested that such strains may represent
an ancestral genotype from which X-factor-dependent H. influen-
zae evolved (36). Three named species belong to the group,
namely, H. influenzae, H. aegyptius, and H. haemolyticus, together
with a broad range of unnamed taxa with various phenotypic and
genotypic traits. All species and unnamed taxa in this group, in-
cluding X-factor-independent representatives of “Haemophilus
intermedius,” are negative for �-galactosidase. H. influenzae is the
type species of the genus Haemophilus, and the H. influenzae
group is sometimes referred to as “genus Haemophilus sensu
stricto” (37, 38).

Haemophilus influenzae. Isolates of H. influenzae transport
and metabolize carbohydrates through the phosphoenolpyruvate:
carbohydrate phosphotransferase system (PTS), but unlike the
PTS found in enteric bacteria, the PTS in H. influenzae is specific
for fructose (39). In the absence or at a reduced level of fructose,
transport and metabolism of fucose and other sugars are upregu-
lated (40). The genome sequence of H. influenzae has revealed the
presence of a cluster of genes involved in the transport and subse-
quent metabolism of fucose (41, 42). One of the genes in the fu-
cose operon is fucK, encoding fuculokinase, which has been in-
cluded in the multilocus sequence typing (MLST) scheme for H.
influenzae (43). The presence of fucK is specific for H. influenzae
and has been used to identify H. influenzae and to differentiate it
from H. haemolyticus and related organisms (see below).

H. influenzae demonstrates a heterogenous phenotype and is
separated into eight biotypes based on the variable characters
tryptophanase (indole production), urease, and ornithine decar-
boxylase (ODC) (Table 4). More than 90% of isolates produce
urease (28, 44). The urease gene cluster is among the most highly
upregulated genes in the chinchilla animal model of otitis media
(45) and in cultures in pooled human sputum (46), and urease
activity enhances survival of H. influenzae at a reduced pH (47). If
urease expression has importance for survival and replication in
the human respiratory tract, it may account for the high preva-
lence of this phenotypic trait. While fermentation of xylose, ri-

bose, and galactose is a well-known metabolic characteristic of H.
influenzae, the differentiating property of fucose fermentation re-
mains to be addressed.

(i) Capsulation. Strains of H. influenzae may produce one of six
distinct capsular polysaccharides or may be unencapsulated. The
capsules consist of repeating units of one of six different disaccha-
rides (48, 49). The presence of polysaccharide capsular antigen,
originally described by Margaret Pittman in 1931 (50), provides
the basis for serotype designations a to f (Hia to Hif). Unencapsu-
lated H. influenzae strains are commonly referred to as nontype-
able H. influenzae (NTHI). The genetic capsulation locus is com-
posed of three functionally distinct regions (51, 52). Regions I and
III are common to all six capsular types and contain genes
involved in the export and processing of the capsular material.
Region I genes (bexDCBA) code for an ATP-driven capsule
export apparatus (53), while region III genes (hcsAB) are nec-
essary for transport of polysaccharide across the outer mem-
brane (54). Region II carries serotype-specific biosynthesis
genes unique to each of the six capsule types; the regions from
representatives of each serotype have been sequenced and com-
prise three to eight genes (49, 55–58). Assignment to serotypes
may be done by slide agglutination or by PCR; however, slide
agglutination carries a high rate of discordance compared with
PCR-based methods (59–63).

(ii) Population structure. The first insight into the population
structure of H. influenzae was obtained using multilocus enzyme
electrophoresis (MLEE). These studies revealed that capsulated H.
influenzae populations were highly clonal (64) and could be di-
vided into two divisions (I and II) (65). Unencapsulated isolates
were more diverse than encapsulated isolates, and their popula-
tion structure appeared to be more influenced by recombination
(66). However, unlike the case for other naturally competent bac-
teria, such as pneumococci or meningococci, the amount of ho-
mologous recombination in H. influenzae did not blur phyloge-
netic signals (67). An MLST scheme for H. influenzae was
subsequently established (43). Concatenation of MLST sequences
is the basis of phylogenetic comparison of multiple housekeeping
gene fragments by multilocus sequence analysis (MLSA) (68). By
MLSA, the bipartite division of capsulated strains was confirmed,
but in contrast to the population structure revealed by MLEE,
strains of serotype e did not cluster with division I strains. Conse-
quently, the designations of phylogenetic groups I and II were
introduced (43), with group I encompassing the core of the spe-
cies, including the type strain, all strains of serotypes c and d, the
majority of strains of serotypes a and b, and most unencapsulated
isolates, and the smaller phylogenetic group II encompassing se-
rotypes e and f, some strains of serotypes a and b, and some un-
encapsulated isolates. With the increasing number of sequence

TABLE 4 Biotypes of Haemophilus influenzae and Haemophilus
parainfluenzaea

Character

Phenotype

H. influenzae biotypes H. parainfluenzae biotypes

I II III IV V VI VII VIII I II III IV V VI VII VIII

Indole � � 0 0 � 0 � 0 0 0 0 � 0 � � �
Urease � � � � 0 0 0 0 0 � � � 0 0 � 0
ODC � 0 0 � � � 0 0 � � 0 � 0 � 0 0
a As defined by Kilian (48).
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types (STs) being deposited in the MLST database, it has become
difficult to make a clear distinction between phylogenetic groups I
and II for unencapsulated isolates (Fig. 3; the figure is restricted to
six genes). For encapsulated strains, the division into phylogenetic
groups is supported by other means. The capsule loci are associ-
ated with either the insertion element IS1016 (group I) or the sodC
gene (group II) (57), and comparison of bexA gene sequences
from 36 encapsulated isolates also resulted in two clusters in ac-
cordance with the phylogenetic groups (69).

A somewhat different population structure was suggested
based on maximum parsimony analysis of 359 MLST sequence
types, using sequence type 65 of the major phylogenetic group I as
the outgroup (70). The study identified 13 clades containing 6 to

89 STs, while 80 STs were not included in any of the clades. Clade
2 corresponds closely to phylogenetic group II, and the major
modifications are the dissection of phylogenetic group I into the
remaining 12 clades and STs outside clades. Most recently, a sta-
tistical (Bayesian) genetic analysis of 819 distinct H. influenzae
MLST genotypes was performed (67). The clusters obtained by
Bayesian analysis correlate well with the classical subdivisions of
the H. influenzae population but show limited concordance with
the clades of Erwin et al. (70). Compared with encapsulated iso-
lates, a significantly larger proportion of unencapsulated isolates
showed evidence of recombination, and when admixture was
present, the total amount of recombination per strain was greater
for unencapsulated strains (67). Capsulation by itself was not a

FIG 3 Neighbor-joining dendrogram based on concatenated gene fragments of adk¸ atpG, frdB, mdh, pgi, and recA (2,712 nucleotides), comparing the type
strains of H. influenzae, H. aegyptius, and H. haemolyticus (filled circles), five genome-sequenced H. haemolyticus strains (294), and 30 strains of H. haemolyticus
and related organisms (36), with 900 H. influenzae sequence types downloaded from the MLST website (www.mlst.net). The 36 strains of H. haemolyticus and
related organisms are negative for fucK, and gaps were treated by complete deletion using MEGA, version 5 (295). Phylogenetic group I is indicated in blue,
phylogenetic group II in yellow, and H. haemolyticus and related organisms in red. Strains with equivocal allocation to phylogenetic groups are shown in gray. Bar,
1 substitution per 200 nucleotides.
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barrier to transformation, and factors other than the capsule may
constitute decisive determinants of the recombination rate in the
H. influenzae population.

Haemophilus aegyptius and H. influenzae biogroup aegyp-
tius. H. aegyptius was described by Pittman and Davis in 1950, as
a species distinct from H. influenzae and with a particular propen-
sity to cause conjunctivitis (71). It was believed to be the bacte-
rium that Robert Koch noticed by microscopic examinations of
purulent matter from cases of eye inflammation in Egypt in 1883
and that later was propagated in vitro by the American ophthal-
mologist John Weeks (the Koch-Weeks bacillus). The description
by Pittman and Davis was based on a field investigation of 28
strains from cases of acute conjunctivitis in the lower Rio Grande
Valley of Texas. The authors stated that H. aegyptius could be
separated from H. influenzae by “serological means and, to a cer-
tain extent, by growth characteristics and biochemical reactions”
(71). Pertinent phenotypic traits of H. aegyptius were the inability
to ferment xylose or produce indole and the ability to agglutinate
human erythrocytes.

A controversy has existed for years on whether H. aegyptius
should be classified separately from H. influenzae. Some investi-
gators have differentiated the two species by differences in the
ability to grow on tryptic soy agar, troleandomycin susceptibility,
cell morphology, and outer membrane protein (OMP) profile (72,
73), but all of these tests have subsequently been disputed or dis-
credited (73–75). DNA-based methods show that H. aegyptius and
H. influenzae do not merit separate species rank: the type strain of
H. aegyptius cannot be separated from H. influenzae by DNA hy-
bridization (74), and it is located within the core of the species by
MLSA (Fig. 3). Steps to formally combine the two species have not
been taken and are complicated by the fact that the specific epithet
“aegyptius” has priority over “influenzae” (1). A pragmatic solu-
tion is to accept H. aegyptius as a validly named species that des-
ignates a group of strains related to H. influenzae isolated during a
short period from a single geographic region and to refrain from

wider use of the name. The type strain plus three other original
Pittman strains were used for the MALDI-TOF mass spectrometry
measurements presented in Table 5, and this analysis also testifies
to the close relationship of the two species.

Brazilian purpuric fever (BPF) appeared in small outbreaks in
Brazil in the 1980s as a syndrome characterized by epidemic pur-
pura fulminans preceded by purulent conjunctivitis (76, 77). The
disease was caused by a single clone of Haemophilus, the BPF
clone, which had the characteristics of H. aegyptius. Measurement
of DNA relatedness by hybridization clearly indicated that the BPF
clone and reference strains of H. aegyptius and H. influenzae all
belonged to the same species; in consequence, Brenner and co-
workers introduced the informal designation H. influenzae bio-
group aegyptius for strains of H. aegyptius, including the BPF
clone (76). As stated above, there are formal obstacles to the uni-
fication of the two species, and the causative agent of Brazilian
purpuric fever is more correctly referred to as the BPF clone of H.
influenzae. Representatives of the BPF clone were compared with
the original Pittman strains of H. aegyptius and other Haemophilus
strains by MLEE (78). By this method, the BPF clone was related to
isolates from cases of conjunctivitis from Brazil and Texas, and all
of these strains were characterized by rod-shaped morphology,
microcolony formation on conjunctival cells, and a 40-bp frame-
shift deletion in the Haemophilus adhesion and penetration gene
hap (78). However, the close relationship of the type strain of H.
aegyptius with the BPF clone reference strain F3031 was not sub-
stantiated by comprehensive genome hybridization data (79) or
MLSA (70). Genome sequencing of the BPF clone of H. influenzae
and a contemporaneous, non-BPF-associated conjunctivitis
strain from Brazil recently showed that the two strains are charac-
terized by a number of novel adhesins, including a 10-member
family of trimeric autotransporter adhesins, unique high-molec-
ular-weight proteins, and four novel fimbrial operons (80). Thus,
the tropism for the eye may be related to a particular repertoire of
adhesins expressed by the original Pittman strains of H. aegyptius

TABLE 5 Mass spectrometry log score similarities of test strains to type strains of species, calculated with Biotyper 3 software (Bruker Daltronic)a

Test strain Species

Similarity (log score) to type strain

1 2 3 4b 5 6 7 8 9 10 11 12 13

1 H. influenzae 2.09 2.02 1.71 1.77
2 H. aegyptiusc 2.29 2.33 1.87 1.96 1.54 1.57
3 H. haemolyticus 1.90 1.82 2.21 2.13 1.45 1.43
4 Cryptic genospeciesd 1.63 1.67 2.07 2.12 1.45 1.53
5 H. parainfluenzae 2.40 1.61
6 H. parahaemolyticus 2.18 2.00 1.46
7 H. paraphrohaemolyticuse 1.82 2.38 1.57
8 H. pittmaniae 1.42 1.77 1.43 2.40 1.41
9 H. sputorum 2.26
10 H. ducreyif 1.80
11 A. actinomycetemcomitans 2.07
12 A. aphrophilus 2.22
13 A. segnis 1.41 1.55 2.17
a Two or three test strains from each species were selected to cover the genetic diversity of the species (8, 36, 98, 99, 101) and compared with reference spectra of the type strains
generated by the direct-smear method (99). Results are expressed as logarithmic means for measurements of test strains performed in triplicate; only log scores of �1.4 are shown.
Results in bold are similarity scores of test strains compared to the type strain of the same species.
b Cryptic genospecies biotype IV strain S32F2 (94) was used as a reference.
c Original strains from cases of acute conjunctivitis, designated H. aegyptius by Margaret Pittman (strains 178a, 758, and 763) (71, 78).
d Haemophilus intermedius subsp. intermedius (CCUG 11096), H. intermedius subsp. gazogenes (CCUG 15793), and nonhemolytic H. haemolyticus (HK 855) (36).
e Two isolates compatible with H. paraphrohaemolyticus by phenotype and DNA sequence were available (99).
f Two isolates were included (CCUG 39065 and 35000HP).
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as well as several lineages of H. influenzae, including the BPF clone
and non-BPF-associated conjunctivitis strains.

Haemophilus haemolyticus. The specific name H. haemolyticus
was introduced in the first edition of Bergey’s Manual of Determi-
native Bacteriology in 1923 (81). With the publication of the name
Haemophilus parahaemolyticus in 1953 for X-factor-independent
strains (82), H. haemolyticus was limited to hemolytic Haemophi-
lus strains dependent on both the X and V factors. Such strains
have been considered rare and of little clinical significance, and
only a few isolates of this species were included in the influential
phenotypic study of the Haemophilus genus by Kilian (28), with a
reported phenotype as presented in Table 3. However, recent
studies have shown that 12 to 40% of X- and V-factor-dependent
strains from the respiratory tract do not belong to H. influenzae
(83–88), and it has been proposed that such strains be classified as
H. haemolyticus (37, 86). Many of the strains thus excluded from
H. influenzae do not comply by phenotype with the classical de-
scription of H. haemolyticus: a large fraction of strains are nonhe-
molytic (85–87), and variable results in tests for urease and orni-
thine decarboxylase allocate strains to seven different biotypes
(37) rather than the two classical biotypes (II and III) based on
tryptophanase production (48) (Tables 3 and 4). The diversity of
strains of the species H. haemolyticus may be real and merely
brought to light by the renewed interest in the species. This would
mirror the increase in the number of biotypes of H. influenzae, as
only five biotypes were introduced in the original description by
Kilian, which was based on 185 strains (28).

The difficult delineation of H. haemolyticus is accentuated by
the existence of other, genetically related taxa with different phe-
notypes, ecological niches, or pathogenicities: the so-called cryptic
genospecies biotype IV and Haemophilus intermedius (see below).
A number of such strains formed a coherent sequence cluster with
genuine H. haemolyticus strains as evaluated by a six-gene MLSA
(36). To classify all variant strains and cryptic genospecies as H.
haemolyticus would be convenient, because H. haemolyticus is a
validated specific epithet in proximity to, but distinct from, H.
influenzae. By MALDI-TOF mass spectrometry analysis, only
small differences are observed between reference strains of H. hae-
molyticus, “cryptic genospecies biotype IV,” and H. intermedius
(Table 5), which indicates that their unification in a single species
would be operational if routine identification was based on mass
spectrometry. However, an emended description of H. haemolyti-
cus has not been formally suggested. In the present review, the
designation H. haemolyticus is reserved for isolates that conform
to the classical phenotype, i.e., hemolytic X- and V-factor-depen-
dent Haemophilus isolates positive for urease and negative for or-
nithine decarboxylase.

(i) Cryptic genospecies biotype IV. Unusual Haemophilus
strains isolated from the genitourinary tract were first reported
from Canada (89, 90) and have been studied further by Quentin
and coworkers (91, 92); they are sometimes referred to as “Hae-
mophilus quentini” (93, 94). Such strains have the phenotypic
characteristics of H. influenzae biotype IV (negative for tryptopha-
nase/indole production and positive for urease and ornithine de-
carboxylase) but can be differentiated from H. influenzae by se-
quencing of 16S rRNA or housekeeping genes, and thus they
represent a cryptic genospecies (36, 92, 94). An active copper-
zinc-cofactored superoxide dismutase (CuZnSOD) has been de-
scribed as a phenotypic means to discriminate cryptic genospecies
biotype IV from biotype IV strains of H. influenzae (95). By MLSA,

strains of cryptic genospecies biotype IV cluster with H. haemo-
lyticus and related organisms excluded from H. influenzae (36).
MALDI-TOF mass spectrometry also reveals a high similarity of
cryptic genospecies biotype IV with H. haemolyticus (Table 5).

(ii) Haemophilus intermedius. Based on DNA hybridization
and selected phenotypic traits, the species Haemophilus interme-
dius was proposed in 1989 (35), but the species is not validly
named and has no standing in nomenclature. Two subspecies
were described: Haemophilus intermedius subsp. intermedius,
which was capable of synthesizing porphyrin from �-aminole-
vulinic acid and fermenting sucrose, and Haemophilus interme-
dius subsp. gazogenes, which was capable of fermenting mannose
and producing gas from glucose. Only fermentation of mannose
could differentiate the latter subspecies from “nonhemolytic H.
haemolyticus.” A number of strains with the characteristics of Hae-
mophilus intermedius were examined by 16S rRNA and house-
keeping gene sequencing (36). The synthesis of porphyrins and
independence of X factor were confirmed for Haemophilus inter-
medius subsp. intermedius. Several heme biosynthesis genes were
identified and found to be carried chromosomally and flanked by
the same genes as those observed with other members of the Pas-
teurellaceae. By a six-gene MLSA, these strains were related to H.
haemolyticus and other taxa excluded from H. influenzae. Biosyn-
thesis of heme in strains closely related to H. haemolyticus and H.
influenzae has thus been documented, and this challenges long-
held delineations in the genus Haemophilus. Porphyrin-synthesiz-
ing strains of H. intermedius will typically be misidentified as H.
parainfluenzae by abbreviated phenotypic testing; negative results
for �-galactosidase, maltose, and mannose are not typical for H.
parainfluenzae and should raise the suspicion of a variant strain.
MALDI-TOF mass spectrometry analysis reveals the high similar-
ity of such strains with H. haemolyticus and related organisms
(Table 5).

The Haemophilus parainfluenzae Group

The salient characteristic of the Haemophilus parainfluenzae
group is the ability to synthesize heme, permitting growth in vitro
in the absence of exogenously added X factor. Five named species
belong to this group: H. parainfluenzae, H. parahaemolyticus, H.
paraphrohaemolyticus, H. pittmaniae, and H. sputorum. All species
ferment sucrose. Although most isolates of H. parainfluenzae are
nonhemolytic, hemolysis is a distinct feature of the other species
in the group.

H. parainfluenzae. Shortly after the description of the X and V
factors, bacteria with a close resemblance to H. influenzae but
dependent only on V factor were identified (96). The epithet
“parainfluenzae” was devised for these strains, inaugurating a long
tradition within the genus Haemophilus of the use of the prefix
“para-” to highlight that such species resemble existing species but
differ in growth factor requirements. A heterogenous phenotype is
characteristic of H. parainfluenzae (Table 3). Similar to H. influ-
enzae, strains of H. parainfluenzae can be separated into eight bio-
types based on the variable characters tryptophanase, urease, and
ornithine decarboxylase (Table 4). The biotype numbers do not
designate similar test patterns for H. influenzae and H. parainflu-
enzae, because biotypes were originally numbered according to
the prevalences of the phenotypic traits in the two species (28).
The biotypes of H. influenzae and H. parainfluenzae can be deter-
mined by commercial test systems (97). Phenotypic discrimina-
tion of H. parainfluenzae from other Haemophilus and Aggregati-
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bacter species is usually unproblematic. However, extended
phenotypic characterization may be needed to discriminate H.
parainfluenzae biotype III from H. parahaemolyticus, H. paraphro-
haemolyticus, or H. sputorum and H. parainfluenzae biotype V
from H. pittmaniae or V-factor-dependent strains of Aggregati-
bacter (Table 3) (8, 98, 99). H. parainfluenzae is distinct from other
Haemophilus and Aggregatibacter species by 16S rRNA and house-
keeping gene sequences (6, 98, 100) (Fig. 1). Delineation of H.
parainfluenzae by MALDI-TOF mass spectrometry appears to be
robust (Table 5).

Hemolytic species. Four species of the H. parainfluenzae group
are hemolytic, namely, H. parahaemolyticus, H. paraphrohaemo-
lyticus, H. pittmaniae, and H. sputorum. H. pittmaniae is negative
for production of tryptophanase, urease, and ornithine decarbox-
ylase, while H. parahaemolyticus, H. paraphrohaemolyticus, and H.
sputorum are positive for urease. Strains of H. parainfluenzae may
express hemolysin, but hemolytic strains of this species are usually
positive for both urease and ornithine decaboxylase (48, 101).

H. paraphrohaemolyticus was originally described as a species
distinct from H. parahaemolyticus due to its CO2-stimulated
growth (102), but this phenotypic trait is unreliable; indeed, one
of the three original strains deposited by Zinnemann and cowork-
ers was later shown to belong to H. parainfluenzae (99). Instead,
H. parahaemolyticus has been separated from H. paraphrohaemo-
lyticus by the former’s ability to produce IgA1 protease and the
latter’s ability to produce �-galactosidase (48). It was recently
shown that the majority of isolates with a phenotype consistent
with H. paraphrohaemolyticus, i.e., similar to H. parahaemolyticus
but positive for �-galactosidase and negative for IgA1 protease,
did not belong to H. paraphrohaemolyticus but constituted a sep-
arate taxon designated H. sputorum (99). H. parahaemolyticus is
closely related to H. paraphrohaemolyticus by both 16S rRNA gene
comparison and a three-gene MLSA, and the two species cannot
be differentiated by current MALDI-TOF mass spectrometry
analysis (99). The rare occurrence of H. paraphrohaemolyticus
hinders a thorough characterization of the species, which is a pre-
requisite for certain delineation from H. parahaemolyticus. At
present, the designation H. paraphrohaemolyticus should be re-
stricted to rare isolates that are positive for �-galactosidase and for
which DNA sequencing or mass spectrometry has indicated iden-
tification as H. parahaemolyticus.

While H. parahaemolyticus and H. paraphrohaemolyticus are
closely related by DNA sequence and mass spectrometry patterns,
H. sputorum and H. pittmaniae form distinct and separate lineages
(Fig. 1 and Table 5). The genome sequence of H. sputorum is
available in the public databases, and the species carries a complete
capsule biosynthesis locus with high similarity to the polysaccha-
ride capsule gene cluster of H. influenzae. Among Haemophilus
and Aggregatibacter species with host specificity for humans, poly-
saccharide capsule biosynthesis loci have been documented only
for H. influenzae and H. sputorum.

Haemophilus ducreyi

H. ducreyi is not closely related to other Haemophilus species (100,
103). The species is dependent on X factor but not V factor (Table
3), as the nadV gene that confers independence of V factor is
located on a plasmid (104). The full-genome-sequenced H. du-
creyi strain 35000HP carries both the extrachromosomal plasmid
and tandem copies of the plasmid integrated into the genome
(105). Strains of the species are fastidious and demonstrate little

enzymatic activity in standard tests, including acid production
from carbohydrates (Table 3). When cultured directly from infec-
tions, small yellow-gray colonies are observed that typically re-
main cohesive when pushed across the agar (106). H. ducreyi is
distinct from other Haemophilus and Aggregatibacter species by
16S rRNA and housekeeping gene sequences (Fig. 1). Delineation
of H. ducreyi by MALDI-TOF mass spectrometry appears to be
robust (Table 5).

THE GENUS AGGREGATIBACTER

The genus Aggregatibacter was created to accommodate species
that had previously been classified in the genera Actinobacillus
(Actinobacillus actinomycetemcomitans) and Haemophilus (Hae-
mophilus aphrophilus, Haemophilus paraphrophilus, and Haemo-
philus segnis); furthermore, H. paraphrophilus was shown to be a
growth variant of H. aphrophilus (8). These species were only dis-
tantly related to the type species of their former genera but were
sufficiently related to each other by 16S rRNA gene sequence,
MLSA, and DNA hybridization to warrant creation of a new ge-
nus. The species of the genus Aggregatibacter are nonhemolytic
and capnophilic; however, isolates of A. actinomycetemcomitans
with overexpression of leukotoxin may exhibit a zone of hemoly-
sis. There is no dependence on X factor, and the requirement for V
factor is variable. Granular growth in broth is common and was
noted in the original descriptions of “Bacterium actinomycetem
comitans” (107) and Haemophilus aphrophilus (108). The generic
name of the group was proposed to designate a rod-shaped bac-
terium that aggregates (8). Phenotypic characteristics differenti-
ating the three described species of Aggregatibacter from other
Pasteurellaceae species are shown in Table 3.

Aggregatibacter actinomycetemcomitans

Bacterium actinomycetem comitans was described in 1912, by
Klinger (107), as a coccobacillary bacterium isolated together with
Actinomyces from actinomycotic lesions of humans. This bacte-
rium has undergone many nomenclatural changes: it was reclas-
sified as Actinobacillus actinomycetemcomitans in 1929 (109), as
Haemophilus actinomycetemcomitans in 1985 (110), and as Aggre-
gatibacter actinomycetemcomitans in 2006 (8). It grows poorly in
ambient air but well in 5% CO2. Colonies on chocolate agar are
small, with a diameter of �0.5 mm after 24 h, but their diameter
may exceed 1 to 2 mm after 48 h. On primary isolation, the colo-
nies are rough and adherent and demonstrate an opaque pattern
described as star-like or like “crossed cigars” (111). The rough
phenotype and the formation of biofilm are related to expression
of long filamentous fibrils and production of poly-N-acetylgluco-
samine (112–114). Cells from rough colonies grow in broth as
granular, autoaggregated cells that adhere to the glass and leave a
clear broth. Successive rounds of in vitro subculturing on solid
media can result in transformation of rough colonies into smooth,
nonadherent colony types that exhibit planktonic growth in broth
and a reduced ability to colonize the mouth of experimental ani-
mals (115). The rough-to-smooth conversion of A. actinomyce-
temcomitans in vitro is commonly, but not exclusively, caused by
mutations of the flp promoter (116).

Six serotypes of A. actinomycetemcomitans (serotypes a to f)
have been described. In contrast to the capsular polysaccharide-
based antigenicity of serotypable H. influenzae, the serologic spec-
ificity of A. actinomycetemcomitans is defined by six structurally
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and antigenically distinct O-polysaccharide components of the
respective lipopolysaccharide molecules (117–120).

Salient biochemical characteristics of A. actinomycetemcomitans
have been presented previously (121); key characters for discrim-
ination between A. actinomycetemcomitans and V-factor-inde-
pendent strains of A. aphrophilus are catalase and o-nitrophenyl-
�-D-galactopyranoside (ONPG), plus fermentation of lactose and
sucrose (Table 3). A. actinomycetemcomitans is distinct from other
Haemophilus and Aggregatibacter species by 16S rRNA and house-
keeping gene sequences (Fig. 1) (6, 8, 100). Delineation of A. ac-
tinomycetemcomitans by MALDI-TOF mass spectrometry appears
to be robust (Table 5).

Aggregatibacter aphrophilus

Haemophilus aphrophilus was described as a cause of infective en-
docarditis in 1940 (108); the specific epithet (Gr. aphros, froth)
denotes a requirement for elevated levels of CO2. The close phe-
notypic relationship with A. actinomycetemcomitans was already
noted by 1962 (122). Haemophilus paraphrophilus was later de-
scribed as a species with a high level of resemblance to Haemophi-
lus aphrophilus, but differing in growth factor requirements (de-
pendence on V factor) (123). However, the V-factor-dependent
phenotype is caused by a partial deletion of the gene encoding
nicotinamide phosphoribosyltransferase, and the NAD-depen-
dent phenotype is naturally reversible in strains competent for
transformation (8). Haemophilus paraphrophilus is therefore a
later heterotypic synonym of Haemophilus aphrophilus. With the
unification of the two species, A. aphrophilus thus encompasses
both V-factor-dependent and -independent isolates, but other-
wise the species is phenotypically homogenous (Table 3). Key
phenotypic characters for discrimination between V-factor-inde-
pendent strains of A. aphrophilus and A. actinomycetemcomitans
are catalase and ONPG, plus fermentation of lactose and sucrose;
the key test for discrimination between V-factor-dependent
strains of A. aphrophilus and A. segnis is fermentation of lactose
(Table 3). A single study claimed a successful separation of Hae-
mophilus aphrophilus from Haemophilus paraphrophilus based on
16S rRNA gene sequences (124). This finding was probably caused
by the inclusion of strains of H. parainfluenzae erroneously iden-
tified as Haemophilus paraphrophilus; indeed, one of the original
three strains of Haemophilus paraphrophilus (strain ATCC 29242)
is a misidentified strain of H. parainfluenzae (8). Rather, 16S
rRNA gene sequences from isolates of A. aphrophilus are homog-
enous and distinct from those of other species (8, 100, 125).

A. aphrophilus can also be delineated by housekeeping gene se-
quencing; however, analyses of gene fragments have indicated an
unexpectedly high level of interspecies horizontal gene transfer
(8), necessitating a multilocus approach to overcome the distort-
ing effect of recombination at single gene loci. Delineation of A.
aphrophilus by MALDI-TOF mass spectrometry appears to be ro-
bust (Table 5), but current databases need to be extended (126).

Aggregatibacter segnis

A. segnis was originally described as a species of Haemophilus char-
acterized by slow growth and weak carbohydrate fermentation (L.
segnis, sluggish) (28). The species was transferred to the genus
Aggregatibacter in 2006 (8). Growth in broth and fermentation
media is slow. The species is invariably dependent on V factor,
while CO2 enhances growth for some strains. Only quantitative
differences in the amount of acid produced from carbohydrates

can phenotypically differentiate A. segnis from strains of H. para-
influenzae biotype V (negative for tryptophanase, urease, and or-
nithine decarboxylase). A. segnis can be identified accurately by
16S rRNA gene sequencing (6, 8, 100). A. segnis can also be delin-
eated by housekeeping gene sequencing; however, analysis of gene
fragments from A. segnis has indicated a high level of interspecies
horizontal gene transfer (8), necessitating a multilocus approach.
Delineation of A. segnis by MALDI-TOF mass spectrometry ap-
pears to be robust (Table 5).

LABORATORY METHODS

Assignment to species by phenotype has been the standard
method of identification for more than a century, but phenotypic
testing has for some years been supplemented by DNA-based
methods in reference laboratories. The new potent technique of
MALDI-TOF mass spectrometry holds promise for altering rou-
tine identification in the future.

Assessment of Growth Factor Dependence

The members of the Pasteurellaceae are obligate parasites adapted
to living on mucosal surfaces. They are propagated in vitro on rich
media, such as chocolate agar, in which sheep or horse blood is
added to a basic medium at a temperature of approximately 70°C.
Members of the genus Aggregatibacter are capnophilic, and pri-
mary isolation may require the presence of elevated levels of CO2.
The detection of capnophilia is not a dependable criterion for
differentiation between species; rather, the general use of 5% CO2

can be utilized to sustain optimal growth of clinical isolates of
Haemophilus and Aggregatibacter (8, 15, 127).

Dependence on X factor can be demonstrated by biochemical
tests or by growth around paper disks impregnated with hemin
chloride on agar plates devoid of X factor. Demonstration of X
factor dependence using growth tests may carry a high rate of
misinterpretations due to trace amounts of heme present in the
medium or to heme inadvertently carried over with the inoculum
(26, 48). Detecting the formation of porphyrins from �-aminole-
vulinic acid performs better than growth-based testing methods
and has become the standard method to document independence
of X factor (27, 128, 129).

Dependence on V factor is conveniently demonstrated by the
satellite growth of the investigated strain around a streak or colony
of a “feeder” strain supplying the critical factor in excess. V-factor-
dependent species of Haemophilus and Aggregatibacter grow to
sizeable colonies immediately adjacent to the feeder strain, with
decreasing colony sizes dependent on the distance (0.5 to 2 cm)
from the feeder strain. An alternative method is to use a paper disk
impregnated with NAD; nicotinamide mononucleotide and nic-
otinamide riboside can also serve as V factor (31). The demonstra-
tion of satellitism is robust, but the test is strictly dependent on the
absence of V factor from the medium. Cultivation of Haemophilus
and Aggregatibacter is usually done on complex media, and if NAD
or certain NAD precursors are present in the formulations, a
strain will not reveal its V factor dependence. Furthermore, if the
test of satellitism is done on blood agar plates, hemolytic Haemo-
philus strains can obtain NAD from the lysed erythrocytes and
grow to sizeable colonies over the entire agar (Fig. 4B). The V
factor dependence of such strains can be demonstrated in the ab-
sence of blood (Fig. 4A) or by use of autoclaved media, in which
NAD and precursors have been degraded completely.
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Other Phenotypic Characterization

Key phenotypic characteristics for differentiation of Haemophilus
and Aggregatibacter species and for discrimination from species of
Actinobacillus and Pasteurella isolated from human infections are
given in Table 3 (15, 48, 99, 121, 127). Except for production of
IgA protease, and possibly that of acid from carbohydrates, these
phenotypic tests are readily available and are still the cornerstones
of routine identification in many clinical microbiology laborato-
ries. A great aid, almost a prerequisite, for identification in the
routine laboratory is an exact knowledge of the clinical settings in
which the various species of these genera occur (see below).

Phenotypic characteristics can be determined by conventional
testing in single tubes (15, 28, 48, 130) or by a number of semi- or
fully automated systems (129, 131–137). The use of automated
systems is feasible and cost-effective, and they usually perform
well when challenged with strains of species that are included in
their databases (135–137). However, attempts to identify species
that are not included in the identification database may lead to
misidentifications (14, 138), which is highly unsatisfactory. Con-
ventional testing in single tubes is flexible but time-consuming
and is dependent on skilled staff, and the cost of extended pheno-
typic testing in single tubes is prohibitive for routine use. How-
ever, the rational use of selected phenotypic tests to confirm or
reject a presumptive identification constitutes a powerful tool in
the hands of an experienced microbiologist.

Production of tryptophanase (indole test), urease, and orni-
thine decarboxylase (ODC) is variable in H. influenzae and H.
parainfluenzae (Table 4) and has been used for biotyping (28). The
division of isolates into eight biotypes has limited discriminatory
power for typing purposes, but the division may serve as an initial
framework for preliminary specific assignment of X-factor-inde-
pendent isolates: (i) strains that are negative in the three tests can
be assigned to H. parainfluenzae biotype V, but this is also charac-
teristic for the hemolytic species H. pittmaniae and the nonhemo-
lytic Aggregatibacter species; and (ii) strains that are positive only
for urease can be assigned to H. parainfluenzae biotype III, but this
is also characteristic for the hemolytic species H. parahaemolyticus
and H. sputorum, as well as the X- and V-factor-independent and
nonhemolytic species Actinobacillus ureae and Actinobacillus
hominis.

The viability of H. ducreyi is lost after 24 h in transport media at
room temperature but may be preserved for several days at 4°C

(139). It is recommended to inoculate clinical material directly
onto the culture media and to incubate samples at 33°C in a hu-
midified atmosphere with 5% CO2 for a minimum of 48 to 72 h
(140, 141). To suppress the resident flora of skin, the selective
media for isolation of H. ducreyi usually incorporate vancomycin
at a concentration of 3 mg/liter. Different strains of H. ducreyi may
grow preferentially on different culture media, and the use of
more than one type of media is recommended. Medium supple-
ments include hemoglobin, fetal calf serum, chocolatized horse
blood, and chemically defined growth-promoting substances,
such as IsoVitaleX. The diagnostic tests for chancroid have been
reviewed elsewhere (142).

DNA Sequencing

16S rRNA gene sequencing. Amplification of the 16S rRNA gene
by PCR, followed by sequencing and comparison with deposited
sequences in the public databases, is a powerful technique for
identifying Haemophilus and Aggregatibacter species. Primers de-
scribed for other Gammaproteobacteria (143–146) usually work
well with the Pasteurellaceae (15, 147, 148). The diversity of 16S
rRNA genes is sufficient to assign an unknown strain to a genus,
and usually also to a species, on the basis of a 500-nucleotide (nt)
sequence arising from a single sequencing reaction, but the dis-
criminatory power may be insufficient for separation of H. influ-
enzae from H. haemolyticus and related organisms (36, 37). Fur-
thermore, the differentiation of Haemophilus aegyptius from H.
influenzae and of Haemophilus parahaemolyticus from Haemophi-
lus paraphrohaemolyticus is hampered by the taxonomic uncer-
tainties regarding H. aegyptius and H. paraphrohaemolyticus. 16S
rRNA gene sequencing can be impeded by polymorphic nucleo-
tide positions resulting from intragenomic heterogeneity between
the multiple rRNA genes. Six copies of the 16S rRNA gene are
usually present in the genomes of Haemophilus and Aggregatibac-
ter (41, 149–152), but little 16S rRNA gene heterogeneity is ob-
served in these genomes. Recently, an unexpected and conspicu-
ously large number of polymorphic positions was observed in a
collection of H. haemolyticus strains and related organisms (see
below) (153), and such a degree of heterogeneity may seriously
interfere with 16S rRNA gene-based identification.

Housekeeping gene sequencing. Different protein-coding
genes have been studied and compared for species of Haemophilus
and Aggregatibacter (8, 98, 101, 154–157). The increased sequence
variation of translated genes compared to rRNA genes confers
more information for analysis, but this must be weighed against
the increased probability of prior recombination events affecting
the genes. In a study of housekeeping genes including nine strains
of Aggregatibacter, 3 of 36 (8%) gene fragments in Aggregatibacter
had been subject to recombination across the species barrier (98).
This observation was expanded upon by examination of a larger
collection of Aggregatibacter strains, where recombination across
the species barrier was observed for 12 of 40 infB fragments, 5 of 40
recA fragments, and 0 of 40 pgi fragments. Recombination across
the genus barrier was found to presumably occur for infB, where
sequences with high similarity to the corresponding gene in H.
parainfluenzae were observed in some isolates of A. segnis (8).
Identification to the species level based on partial sequencing of a
single housekeeping gene may thus be erroneous. To overcome
the distorting effect of recombination at single gene loci, it is nec-
essary to investigate a number of separate genes and to perform
the analysis on concatenated sequences (MLSA).

FIG 4 The type strain of H. pittmaniae was cultured for 24 h on different agars
in the presence of a NAD-containing disk and photographed by transillumi-
nation. (A) Todd-Hewitt agar. Growth is apparent only around the NAD disk.
(B) Five percent horse blood agar. Growth of hemolytic colonies is visible over
the entire agar. (Reprinted from reference 15 with permission of the
publisher.)
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Identification by PCR

PCR-based detection of Haemophilus and Aggregatibacter in clin-
ical material has focused mainly on rapid diagnosis of H. influen-
zae meningitis (158–161), improved detection of H. ducreyi (142),
and identification of the virulent clone JP2 of A. actinomycetem-
comitans (162, 163). PCR has also been utilized for detection of H.
influenzae DNA in culture-negative middle ear fluids where prior
antibiotic therapy has made culturing inconclusive (164) and for
improved microbiological surveillance of bacterial meningitis in
parts of the world where laboratory facilities for immediate cul-
turing of cerebrospinal fluid samples are not available (165). With
respect to H. influenzae meningitis, the development of PCR tech-
nology coincided with the implementation of the Hib vaccine,
which, on one hand, reduced the need for an assay targeting H.
influenzae due to reduced incidence of the disease. But on the
other hand, the need for surveillance of Hib vaccine efficacy and of
serotype replacement still made correct identification mandatory.
The most commonly used assay has probably been the dual-target
PCR approach of van Ketel et al., which specifically targets capsu-
lated strains (160). One primer set was specific for the capsule
export protein gene bexA and amplified target DNAs from H.
influenzae strains of all serotypes, while the other primer set rec-
ognized the gene encoding the outer membrane protein P6. The
latter set also amplified DNAs from H. haemolyticus and two of
nine H. parainfluenzae strains (160). Failure to detect the capsule
export protein gene with the bexA primers in H. influenzae sero-
types e and f was subsequently reported (69, 166, 167). Serotype e
and f strains belong to phylogenetic group II of H. influenzae,
which encompasses relatively distant lineages of the species. Other
targets for PCR detection of capsulated strains include bexB (168),
present in all serotypes, and the serotype b-specific polysaccha-
ride-synthesizing gene bcs3 (169). The newly described species H.
sputorum contains a complete capsule biosynthesis locus with
high similarity to the capsule gene cluster in H. influenzae, and
standard bexA and bexB PCRs give positive results with strains of
H. sputorum (unpublished observation). Thus, positive results
with current bexA and bexB PCRs are not specific for H. influenzae
and must be confirmed by other means. With the implementation
of Hib vaccination, non-serotype b and unencapsulated strains
have gained importance as causes of H. influenzae infections. For
detection of all H. influenzae strains, regardless of the encapsula-
tion status, other targets have been tested, including the 16S rRNA
gene (164, 170, 171), ompP2 (63), ompP6 (172), and hpd (161,
173). PCR amplification of specific marker genes to discriminate
H. influenzae from neighboring taxa is described below.

The difficult culture of H. ducreyi from clinical specimens
makes it an ideal candidate for detection by molecular techniques.
Primer sets targeting the 16S rRNA gene (174–176), the ribosomal
intergenic spacer region (177), recD (178, 179), and the heat shock
protein gene groEL (179, 180) have been published.

MALDI-TOF Mass Spectrometry

MALDI-TOF mass spectrometry has emerged as a rapid and ac-
curate means of identifying microorganisms by separating pep-
tides and proteins from cells according to mass (181–184). A spec-
trum representing the released molecular fragments is generated
within minutes, and identification is accomplished by comparison
with reference spectra in a database. Two separate strategies have
been developed for identification: either inclusion of a large num-

ber of spectra for each taxon in the database or generation of
artificial spectra incorporating only taxonomically important
peaks, i.e., peaks representing peptide components present in the
majority of strains of a species and absent from related taxa (185,
186). Identification by MALDI-TOF mass spectrometry of
HACEK (Haemophilus and Aggregatibacter spp., Cardiobacterium
hominis, Eikenella corrodens, and Kingella kingae; see below for
more details) clinical isolates, including H. influenzae, H. parain-
fluenzae, A. actinomycetemcomitans, and A. aphrophilus, was re-
cently reported (126). Despite the use of modest thresholds of
identification (log scores of �1.7 for reliable genus identification
and �1.9 for reliable species identification), only 93% of isolates
were correctly identified to the genus level, and 66% to the species
level. Of the Haemophilus and Aggregatibacter species tested, A.
aphrophilus isolates produced mainly genus-level identifications,
and one isolate was misidentified as H. influenzae (126). Clinical
A. aphrophilus isolates showed notable spectral differences com-
pared to the single reference database entry, and the average score
for A. aphrophilus increased significantly by use of a customized
database incorporating a local clinical isolate (126).

Other mass spectrometry investigations of Haemophilus and
Aggregatibacter have found large differences between spectra ob-
tained from the majority of the species (99, 187). Table 5 lists
average similarity scores for mass spectra of two or three selected
test strains compared with type strains of species. Representatives
of unnamed taxa related to H. haemolyticus (“cryptic genospecies
biotype IV,” “nonhemolytic H. haemolyticus,” and Haemophilus
intermedius) are combined into a group designated “cryptic geno-
species.” The mass spectrometry analysis separated species ro-
bustly, with two exceptions: there was insufficient resolution
within the H. influenzae group (H. influenzae, H. aegyptius,
H. haemolyticus, and “cryptic genospecies”) and between
H. paraphrohaemolyticus and H. parahaemolyticus. The spectral
differences presented in Table 5 indicate that the databases and
identification algorithms of MALDI-TOF mass spectrometry can
be expanded and refined, which will enable reliable identification
of the large majority of human Haemophilus and Aggregatibacter
isolates. Some issues and questions remain, such as the use of a
single artificial spectrum versus multiple spectra for each taxon
(185, 186) and whether databases should be modified locally by
incorporation of spectra from reference strains that have been
cultured, extracted, and analyzed in the same manner as clinical
isolates (126). Because of the close relationship and taxonomic
uncertainties regarding some of the species in the genus Haemo-
philus, MALDI-TOF mass spectrometry cannot be expected to
definitively identify all isolates from this genus. But the ease,
speed, and precision of the procedure will undoubtedly result in
improved routine identification of the more rarely encountered
microorganisms from clinical specimens.

Other Methods

Fluorescence in situ hybridization (FISH) with probes specific for
H. influenzae DNA has been used to identify the bacterium when
Gram-negative bacilli are seen on microscopy of cerebrospinal
fluid (188) and to detect H. influenzae DNA in adenoid biofilms of
otitis-prone children (189) and in the mucosae of patients with
chronic rhinosinusitis (190). Use of microarray hybridization for
identification has been introduced for profiling the oral microb-
iotas of individuals (191, 192) but has not yet evolved as a useful
method for routine identification.
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Differentiation of Haemophilus influenzae from
Haemophilus haemolyticus

The recognition of the inadequacy of current methods for the differ-
entiation of H. influenzae from nonhemolytic variants of H. hae-
molyticus has prompted a large number of investigations address-
ing either the magnitude of misidentifications or the ability of an
assay or an algorithm to confirm or reject a putative identification
of H. influenzae. The major challenge in the evaluation of these
studies is the lack of a universal delineation of H. influenzae. Var-
ious collections of strains are investigated and different tests are
used to define H. influenzae; thus, isolates that are included in the
species in one investigation may be excluded from the species in
another. Categorizations such as “equivocal” (88) and “fuzzy spe-
cies” (173) are legitimate descriptions of diagnostic uncertainties,
but the variable definition and use of such terms are further com-
plications.

Phenotypic traits. H. influenzae is nonhemolytic and depen-
dent on both the X and V factors. Plasmids from H. ducreyi are
capable of conferring NAD independence on H. influenzae in the
laboratory (104), but exceptions to the invariable dependence on
both the X and V factors and the absence of hemolysis have not
been reported for naturally occurring H. influenzae to date (36, 37,
86). H. influenzae usually ferments both ribose and xylose and
does not ferment sucrose or mannose (36, 48). Expression of a
functional IgA1 protease is considered a specific trait of only three
Haemophilus species, i.e., H. influenzae, H. aegyptius, and H. para-
haemolyticus (48, 193), but it was recently shown that several iso-
lates of H. haemolyticus and related organisms, including repre-
sentatives of the X-factor-independent Haemophilus intermedius,
specifically cleaved IgA1 and were positive for the encoding gene
(iga) by hybridization (36). The presence of a functional IgA1
protease in strains which clearly do not belong to H. influenzae
challenges the specificity of this phenotypic trait, while it does not
exclude the possibility that conserved regions of the iga gene may
be used in PCR or hybridization assays to distinguish strains of H.
influenzae from related taxa (see below).

Production of gas from fermentation of glucose, emission of
H2S, or conformational changes in the outer membrane protein
(OMP) P6 are other phenotypic traits that have been exploited for
differentiation within the H. influenzae group (Table 6). A mono-
clonal antibody (MAb 7F3) has been shown to react with OMP P6
of H. influenzae but not with those of strains of H. haemolyticus or
cryptic genospecies biotype IV (86, 194). However, the specifici-
ties of MAb 7F3 and the other differentiating phenotypic traits are
limited. In a study of a large number of strains classified by a
five-gene MLSA, production of gas was observed for 6% of H.
influenzae and 88% of H. haemolyticus strains, production of H2S
was observed for 13% of H. influenzae and 69% of H. haemolyticus
strains, and MAb 7F3 reacted with 97% of H. influenzae and 12%
of H. haemolyticus strains (37). It should be emphasized that this
study addressed primarily carriage isolates, i.e., a population
where a large proportion of isolates with aberrant test results must
be expected.

16S rRNA gene sequencing. Analysis of complete or near-full-
length 16S rRNA gene sequences (1.4 kb) segregates X- and V-fac-
tor-dependent Haemophilus strains into distinct groups that clus-
ter with the type strain of either H. influenzae or H. haemolyticus
(36, 86, 195, 196) (Fig. 5). However, modest bootstrap support of
the 16S rRNA gene clusters signifies a risk of misclassifications (36,

196), and this risk is increased when analysis is based on shorter
16S rRNA gene fragments. Indeed, the segregation of strains into
two clusters by an 886-nt 16S rRNA gene fragment was in conflict
with the clustering based on a five-gene MLSA (37). Caution must
therefore be exercised if 16S rRNA gene sequencing is used as the
gold standard for the delineation of H. influenzae. In comparison
with MLSA, the inferior resolution of the 16S rRNA gene analysis
is caused by less variability, a shorter fragment length, and the
presence of polymorphic positions in the multiple copies of the
16S rRNA gene. An unexpectedly high level of 16S rRNA gene
polymorphism was recently described for a collection of strains of
H. haemolyticus and related organisms (153). The average fre-
quency of 16S rRNA gene polymorphic nucleotide positions was
approximately 10 times the level observed in H. influenzae. Up to
36 polymorphic positions in the 16S rRNA gene of a single strain
were observed, corresponding to 2.6% of the positions in the se-
quenced fragment (1,362 nt). For comparison, the type strain of
H. haemolyticus shows 96.9% identity with the type strain of H.
influenzae. The outer stem of 16S rRNA gene helix 18 is an illus-
trative example (Fig. 6). Three distinct types of helix 18 were pres-
ent in the collection, represented by H. influenzae strain Rd, cryp-
tic genospecies biotype IV strain 16N, and H. haemolyticus strain
NCTC10659T (Fig. 6). However, seven other strains harbored two
separate helix 18 types; depending on the combination, the mix-
ture of helix types resulted in 8, 9, or 11 polymorphic positions
within the region of 23 nt that comprises the outer stem of helix 18
(153). These findings emphasize that even rRNA genes may be
subject to interspecies recombination among members of the H.
influenzae group.

Multilocus sequence analysis. The most reliable delineation of
H. influenzae at present is based on concatenated sequences of
housekeeping gene fragments, using either the H. influenzae
MLST scheme (43) or an alternative, five-gene scheme that in-
cludes a fragment of the 16S rRNA gene (37). The alternative
scheme is based on a general MLSA developed for the family Pas-
teurellaceae (98), but the primers were improved to specifically

TABLE 6 Tests differentiating H. influenzae from H. haemolyticus and
related organisms

Characteristic Method References

Production of gas from glucose Phenotype 36, 37
H2S emission Phenotype 36, 37
IgA1 cleavage Phenotype 36
OMP P6 conformation Immunoassay 37, 86, 194

Detection of:
fucK Hybridization, PCR 36, 86, 88, 173, 196,

199, 206
hap PCR 36, 199
hpd PCR 88, 161, 173, 196
iga Hybridization, PCR 36, 37, 85, 173
lgtC Hybridization 37, 173
ompP2 PCR 161, 173
ompP6 PCR, sequencing 160, 172, 173, 200
pilA PCR 299
rrsa PCR 84, 86, 173
sodC Hybridization, PCR 36, 88, 95, 196, 199,

202, 203, 206
a See the text for information on differentiation by 16S rRNA gene sequence
comparison.
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target the H. influenzae group. If the H. influenzae MLST scheme is
employed, the fuculokinase gene fucK is omitted because this gene
is usually not present in H. haemolyticus (36, 86, 197). Figure 3
depicts a comparison of 900 H. influenzae sequence types from the
MLST website with the type strains of H. influenzae, H. aegyptius,
and H. haemolyticus plus 35 isolates of H. haemolyticus and related
organisms that have been excluded from H. influenzae. The type
strain of H. haemolyticus and the 35 non-influenzae Haemophilus
reference strains are located in a common cluster (red in Fig. 3)
that is clearly separate from phylogenetic groups I (blue) and II
(yellow) of H. influenzae. Also included in the H. haemolyticus
cluster are seven sequence types from the MLST website: ST35,
deposited as a cryptic genospecies biotype IV strain, plus ST743,
ST759, ST815, ST816, ST845, and ST911, which may represent
misidentified strains of H. haemolyticus or related organisms. The
modest bootstrap support of the red cluster in Fig. 3 (67%) is
caused by ST743, ST759, and ST816; if these three STs are omitted
from the comparison, the bootstrap support of the red cluster
increases to 99% (not shown).

Detection of biomarker genes by PCR. A number of genes have

been explored for use as targets in the differentiation of H. influ-
enzae from H. haemolyticus (Table 6). Some of the biomarker
genes, such as fucK and sodC, are either present or absent in the
genomes of the members of the H. influenzae group (although
sodC may be present as a pseudogene). In this case, there is more
flexibility for design of amplification and/or hybridization condi-
tions. For other biomarkers, such as hpd and ompP6, homologs of
the genes are probably present in all strains of the H. influenzae
group, and differentiation is linked to preserved nucleotide motifs
within the target genes. In the latter case, strict adherence to pub-
lished protocols is essential for interpretation and comparison of
results.

Fuculokinase is one of four enzymes involved in the fucose
pathway (198), and the encoding gene, fucK, is one of seven genes
included in the MLST scheme for typing of H. influenzae (43).
Murphy and coworkers were unable to amplify the gene from
variant strains (86), suggesting fucK as a favorable marker of H.
influenzae (36). fucK was indeed superior to sodC and hap in an
assessment of marker genes for identification of misidentified
strains among 480 unselected clinical isolates of H. influenzae
(199). The presence of fucK has not been assessed in a large col-
lection of H. haemolyticus isolates. The gene cannot unambigu-
ously identify H. influenzae, as occasional strains of H. influenzae
are negative for fucK due to a complete or partial deletion of the
fucose operon (40, 196, 197); similarly, fucK sequences have been
amplified successfully by PCR from occasional strains excluded
from this species (173, 200). Because fucK is part of the MLST
scheme, primers for amplification of the gene are widely available.
For practical purposes, the failure to amplify the fucK fragment
from a presumptive isolate of H. influenzae suggests an incorrectly
identified strain that should be characterized further.

Two promising biomarker genes are hpd, encoding the sur-
face-exposed lipoprotein protein D, and iga, encoding IgA1 pro-
tease. hpd is conserved among H. influenzae serotype b and unen-
capsulated strains (201). PCR assays targeting hpd for detection of
H. influenzae meningitis did not amplify hpd sequences from 16
isolates of H. haemolyticus (161), suggesting that this assay could
provide an additional tool for differentiating the two species; this
was confirmed in several recent studies (173, 196). Detection of
iga has also performed well in several studies (37, 85, 173). McCrea
and coworkers found complete segregation of iga gene probe hy-

FIG 5 Neighbor-joining tree based on near-full-length 16S rRNA gene se-
quences (1,361 or 1,362 nucleotides), comparing the type strains of H. influ-
enzae, H. aegyptius, and H. haemolyticus (filled circles) with 80 strains of H.
influenzae (36, 199, 296) and 39 reference strains of H. haemolyticus and related
organisms (36, 195, 199, 294) (filled triangles). Strain PN134 was omitted from
the comparison because of doubtful identification to the species level (199).
Phylogenetic group I is indicated in blue, phylogenetic group II in yellow, and
H. haemolyticus and related organisms in red. H. haemolyticus and related
organisms are located on two branches, with one adjacent to H. influenzae
phylogenetic group II and composed mainly of non-hemolytic H. intermedius
subsp. gazogenes (bootstrap support, 36%) and a larger cluster encompassing
the type strain, porphyrin-synthesizing strains, and cryptic genospecies bio-
type IV strains (bootstrap support, 57%). In contrast, all representatives of H.
influenzae and the type strain of H. aegyptius are located in a single cluster
supported by a bootstrap value of 63%. Analysis was conducted using MEGA5
(295), and ambiguous positions were removed for each sequence pair.

FIG 6 The three 16S rRNA gene helix 18 types present in a collection of
isolates from the H. influenzae group, represented by H. influenzae strain Rd,
cryptic genospecies biotype IV strain 16N, and H. haemolyticus strain NCTC
10659T. The outer stem of helix 18 (nt 453 to 477) is shown. Conserved nucle-
otides are shown in blue. (Adapted from reference 153 with permission of the
publisher.)
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bridization in an MLSA-based dendrogram, where 109 iga-nega-
tive, putative H. haemolyticus strains clustered separately from 88
iga-positive strains, including reference strains of H. influenzae
(37). As stated above, some variant strains excluded from H. in-
fluenzae express a functional IgA1 protease, and probes generated
from different regions of the iga gene show variable hybridization
with a panel of test strains (36). It is therefore crucial to standard-
ize template DNAs used for generation of hybridization probes
and to identify optimal primers and conditions when PCR-based
assays are employed for detection of iga.

In addition to antibody recognition of outer membrane pro-
tein P6, the encoding gene, ompP6, has been investigated by PCR
(172, 173) and sequencing (200). Residues 33, 42, 59, and 61 of
OMP P6 are alanine, alanine, aspartate, and threonine, respec-
tively, in H. influenzae, while the corresponding residues in H.
haemolyticus are glycine, serine, asparagine, and glutamate; in par-
ticular, the conformation of the MAb 7F3 epitope depends on
amino acids 59 and 61 (194). Chang and coworkers sequenced the
ompP6 genes of 163 isolates obtained from the pharynxes of
healthy children and from cases of pediatric otitis media (200).
Based on translated amino acid sequences at the four key residues,
all otitis and nasopharyngeal isolates were classified as H. influen-
zae, while 12 of 63 oropharyngeal isolates were H. haemolyticus.
However, six additional isolates could not be categorized based on
ompP6 sequencing; when these isolates were subjected to MLST,
the adk gene could not be amplified for two isolates, while the four
remaining isolates clustered with H. haemolyticus (200). Addi-
tionally, 8 of 163 isolates had variations in the OMP P6 translated
amino acid sequence at sites outside the four key residues; 2 of
these isolates were subjected to MLST and finally identified as H.
influenzae and H. haemolyticus. It was concluded that molecular
characterization of ompP6 was unable to differentiate all strains of
H. influenzae from H. haemolyticus (200).

The copper-zinc-cofactored superoxide dismutase (CuZn-
SOD) encoded by sodC is present in cryptic genospecies biotype
IV and in H. haemolyticus and has been used for differentiation of
these taxa from H. influenzae (95, 202). Recent hybridization stud-
ies confirmed the presence of sodC in all investigated strains of H.
haemolyticus and related organisms (36, 203). However, a sodC
homolog encoding an inactive CuZnSOD enzyme is present in
capsulated phylogenetic group II strains of H. influenzae (204), in
which the gene is located adjacent to the capsule export protein
gene bexA (57, 205). sodC may also be present in unencapsulated
strains of H. influenzae (203, 206); interestingly, an active CuZn-
SOD enzyme was detected in the latter strains, which may indicate
acquisition through interspecies recombination with H. haemo-
lyticus (203). Low prevalences of sodC have been reported for clin-
ical isolates of genuine H. influenzae, ranging from 1.3% among
unselected clinical isolates (199) to 3.2% among isolates from pa-
tients with cystic fibrosis (206). In contrast, a sodC prevalence of
9.2% was demonstrated in a collection of unencapsulated H. in-
fluenzae, mostly composed of commensal, nonclinical strains
(203). Consequently, detection of sodC cannot unambiguously
discriminate between H. influenzae and H. haemolyticus.

Two recent studies evaluated and compared PCR screening
assays for differentiation of H. influenzae from H. haemolyticus
and related organisms among nasopharyngeal carriage isolates.
One study screened 245 presumptive H. influenzae isolates for
fucK and hpd and performed near-full-length (1,462 nt) 16S rRNA
gene sequencing on 119 of the isolates (196). Another study char-

acterized 60 selected strains from healthy and otitis-prone chil-
dren by partial sequencing of 16S rRNA (598 nt) and recA (543 nt)
genes and by seven separate PCR assays, including assays of fucK,
hpd, iga, and lgtC (173). For identification of H. influenzae, the hpd
PCR performed with a high sensitivity (88% and 89% for the
healthy and otitis-prone children, respectively). Both studies
found the fucK PCR to perform with reduced sensitivity, with 37%
and 24% of study-defined H. influenzae strains, respectively, being
negative for this biomarker gene. The investigation of carriage
isolates from Minnesota did not detect fucK in 44 non-influenzae
Haemophilus strains (196), while the study from Australia ampli-
fied this gene from 6 of 25 non-influenzae Haemophilus strains
(173). However, it should be emphasized that different delinea-
tions of H. influenzae were employed in these studies. Whereas
119 strains could be assigned to two separate clusters by a single
1,469-nt 16S rRNA gene sequence (196), the diversity revealed by
partial recA and 16S rRNA gene fragments precluded complete
dichotomous identification of species; rather, isolates were inter-
preted as H. influenzae if they had approximately 97% DNA sim-
ilarity (or higher) with the reference strain 86-028NP (16S rRNA
and recA concatenated sequence) and possessed most of the target
genes (PCR results) (173).

MALDI-TOF mass spectrometry. Two recent studies used
MALDI-TOF mass spectrometry, on a single platform (207) or
two separate platforms (208), to differentiate H. haemolyticus
from H. influenzae. Direct comparison of the measured H. haemo-
lyticus and H. influenzae spectra revealed high overall spectral sim-
ilarities between the species, with considerable intraspecies vari-
ability (208). Both studies found the manufacturers’ databases to
be insufficient for distinction of species, and both studies success-
fully identified test strains after inclusion of suitable spectra in a
modified database. Comparing strains against a database that en-
compasses some of the test strains is not scientifically correct;
however, the results are indeed promising and should be ex-
panded. A complete concordance of tests for fucK and OMP P6
with identification to the species level (207) indicates that the
most challenging strains, in terms of identification, have yet to be
subjected to the procedure.

CLINICAL SIGNIFICANCE

New knowledge on the difficult delineation of H. influenzae, the
description of new species, and the taxonomic rearrangements of
Haemophilus and Aggregatibacter have consequences for the clin-
ical significance attributed to the species of these genera. The fol-
lowing focuses on these aspects and gives an update on the asso-
ciation of particular species with various clinical syndromes. A
number of pertinent reviews are listed for more in-depth infor-
mation.

Infectious Endocarditis and the HACEK Group

The so-called HACEK group of fastidious Gram-negative organ-
isms is a recognized but unusual cause of infective endocarditis,
responsible for 1.4 to 3% of cases (209, 210). The group was orig-
inally described to encompass Haemophilus species, Actinobacillus
actinomycetemcomitans, Cardiobacterium hominis, Eikenella cor-
rodens, and Kingella kingae (211). In the original report, Haemo-
philus spp. accounted for 18 of 32 HACEK organisms involved,
including two H. influenzae strains (211). A review of endocarditis
due to rare and fastidious bacteria covering the years 1966 to 1999
reported that only 13 of 398 HACEK cases were caused by H.
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influenzae (212), making this a rare cause of the infection. H. in-
fluenzae is a more common etiology of adult bacteremia than
other Haemophilus and Aggregatibacter spp. combined (213); con-
sequently, the isolation of H. influenzae from blood is rarely a sign
of infective endocarditis, and the species is sometimes omitted
from the HACEK group (126, 214). After the recent taxonomic
rearrangements, the HACEK acronym can still be used for the
group, with the acronym now denoting Haemophilus and Aggre-
gatibacter spp., C. hominis, E. corrodens, and K. kingae. But the
relative proportions have changed, with the genus Aggregatibacter
now being the dominant etiology of HACEK endocarditis. The
literature review covering 1966 to 1999 found 92 cases caused by
A. actinomycetemcomitans and 99 by A. aphrophilus (reported as
Haemophilus aphrophilus and Haemophilus paraphrophilus), in
comparison to 66 cases caused by H. parainfluenzae, 13 by H.
influenzae, and 128 by C. hominis, E. corrodens, and K. kingae
combined (212). A multicenter study describing 77 cases of
HACEK endocarditis during 2000 to 2006 found 31 cases caused
by Haemophilus spp. and 26 by Aggregatibacter spp. (210); how-
ever, not all Haemophilus isolates were identified to the species
level. A. segnis, which was not included in the original definition of
HACEK organisms, is a rare cause of infective endocarditis (210,
215, 216).

The epidemiological and clinical features of infective endocar-
ditis caused by A. actinomycetemcomitans (217) and Haemophilus
(218) have been reviewed, and the characteristics and outcomes of
HACEK endocarditis were recently published for a prospective,
multinational cohort study (210). Extended incubation of blood
cultures to increase the recovery of HACEK bacteria is considered
unnecessary (213, 214).

Haemophilus influenzae in the Post-Hib-Vaccine Era

Vaccination against H. influenzae serotype b (Hib) was initiated in
1985, when polyribosylribitol phosphate polysaccharide vaccines
were licensed for use. Conjugated vaccines with greatly improved
immunogenicity in young children followed a few years later
(219). In the pre-Hib-vaccine era, H. influenzae meningitis and
epiglottitis were caused predominantly by serotype b strains and
mainly affected children of �5 years of age (220–222). The imple-
mentation of Hib conjugate vaccines into routine vaccination
schedules dramatically reduced the burden of invasive H. influen-
zae disease in many developed countries, while implementation of
the vaccine in developing countries has progressed more slowly
(219). In 2000, it was estimated that Hib caused 371,000 deaths
worldwide in children of �5 years of age (223). Routine use of the
Hib vaccine has changed the epidemiology of H. influenzae, and
unencapsulated H. influenzae now accounts for most invasive in-
fections, followed by serotypes f and b (224–229). An unexpect-
edly large proportion of invasive childhood infections caused by
serotype a was recently reported from several Canadian provinces
(205, 230) and among Alaska Native children (231). There is no
evidence of substantial replacement disease with non-b serotypes
in young children in the United States (232) or of increases of
non-b infection in Australian indigenous children (233).

Although invasive H. influenzae disease was primarily a child-
hood disease in the prevaccine era, serious infections caused by
unencapsulated strains were noted in adults (234, 235). The inci-
dence of invasive H. influenzae disease may actually have increased
in recent years (227, 229), but since Hib vaccine failure is rare

(236), most invasive infections occur in the extreme ages of life
and in patients with predisposing conditions (224, 226, 229, 232).

With the dramatic reduction of serious invasive disease caused
by Hib, focus has shifted to less severe but far more prevalent
infections caused by unencapsulated H. influenzae strains, such as
otitis media, conjunctivitis, sinusitis, and exacerbation of chronic
obstructive pulmonary disease. Readers are referred to reviews of
H. influenzae and infections of the respiratory tract for more in-
formation (237–243).

The clinical features of Brazilian purpuric fever and the emer-
gence and disappearance of the virulent BPF clone of H. influenzae
have been reviewed previously (77).

Haemophilus haemolyticus and Related Organisms

Several lines of evidence indicate that the pathogenicity of H. hae-
molyticus is much reduced compared with that of H. influenzae.
While 15 to 20% of presumptive H. influenzae nasopharyngeal
isolates can be identified as H. haemolyticus and related organisms
by molecular characterization (84, 85, 87), not a single one of these
was detected among 130 middle ear fluid isolates obtained by
means of tympanocentesis (86), supporting the view that H. hae-
molyticus is not a cause of otitis media. Reinvestigation of pre-
sumptive H. influenzae isolates cultured from lower respiratory
tract samples from cystic fibrosis patients (206) or from unse-
lected clinical samples submitted to the laboratory on suspicion of
lower respiratory tract infection (199) detected �1% misidenti-
fied strains, which also points to a minor pathogenic role for H.
haemolyticus and related organisms. In contrast, a characteriza-
tion of presumptive H. influenzae isolates cultured from surveil-
lance sputa from adults with chronic obstructive pulmonary dis-
ease revealed that almost 40% were H. haemolyticus (86).
However, in the prospective part of that study, acquisitions of new
strains of H. haemolyticus were not associated with pulmonary
exacerbations, whereas 45% of acquisitions of new strains of H.
influenzae were associated with exacerbations.

Recent data from the Centers for Disease Control and Preven-
tion (CDC) emphasize that H. haemolyticus and related organisms
should not be considered strict commensal organisms devoid of
pathogenic potential. A retrospective characterization by near-
full-length 16S rRNA gene sequencing of 374 invasive isolates of
unencapsulated H. influenzae referred to the CDC revealed 7 iso-
lates (1.9%) to be H. haemolyticus or related organisms (195).
Isolates were recovered from blood in five cases and from synovial
fluid and a pancreatic specimen in one case each; six of the seven
patients had underlying medical conditions or recent surgical pro-
cedures. Five of the isolates were hemolytic, which categorically
excludes identification as H. influenzae. The proportion of H. hae-
molyticus and related organisms among invasive strains (195) thus
exceeded the reported proportion cultured from unselected clin-
ical samples (199). A reliable method to distinguish H. influenzae
from H. haemolyticus is a prerequisite for determining their spe-
cific clinical significance.

The cryptic genospecies biotype IV is recognized as a rare but
definite neonatal, maternal, and urogenital pathogen (244). The
majority of infections are associated with the female genitourinary
tract and neonates (244–246); however, a series of cryptic geno-
species biotype IV isolates cultured from urethral discharge or
urine from adult males have also been reported (93).
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Other Haemophilus Species

H. parainfluenzae is the most commonly found Haemophilus spe-
cies in infective endocarditis (see above) and is the most com-
monly found non-influenzae Haemophilus species in bloodstream
infections (213, 247). However, some reports of invasive infec-
tions with H. parainfluenzae may be misidentifications caused by
erroneous assessment of X factor independence (222).

Margaret Pittman originally separated H. parahaemolyticus
from H. haemolyticus and found the former species to be associ-
ated frequently with acute pharyngitis and occasionally with sub-
acute endocarditis (82). H. parahaemolyticus has been observed as
a dominant member of the cultivable microbiota in patients with
pharyngitis (248), while being virtually absent from the oral cavity
and pharynx in healthy children and adolescents. H. parahaemo-
lyticus strains express IgA1 protease (48), which is capable of spe-
cifically cleaving and functionally inactivating human secretory
IgA, which is the principal mediator of humoral immunity of the
respiratory mucosa. Functional IgA1 proteases are also expressed
by the important bacterial pathogens Neisseria meningitidis, Strep-
tococcus pneumoniae, and H. influenzae (249, 250). For this reason,
H. parahaemolyticus has been considered a potential pathogen,
but the evidence linking the species to acute pharyngitis is at pres-
ent circumstantial.

H. pittmaniae was described in 2005, based on isolates cultured
from saliva but also from various body fluids, without description
of the patient cases (98). It was recently reported as responsible for
respiratory tract infection in a patient with underlying lung dis-
ease (251), with the isolate identified by MALDI-TOF mass spec-
trometry. Both H. pittmaniae and H. sputorum are homogenous
species (98, 99) characterized by distinct mass spectra (Table 5),
and it can be presumed that their clinical significance will be clar-
ified with improvement of databases and increased use of mass
spectrometry. In contrast, H. paraphrohaemolyticus appears to be
exceedingly rare in clinical specimens and cannot easily be iden-
tified (99).

Chancroid (soft chancre or ulcus molle) is a sexually transmit-
ted disease caused by H. ducreyi and characterized by genital ul-
cerations accompanied by regional lymphadenitis and bubo for-
mation. The disease is rare in developed countries, with only eight
reported cases in 2011 in the United States (252). Its evolution
(253), host-pathogen interaction (254), and clinical significance
(255–257) have been reviewed. Genital ulceration is a major co-
factor in the transmission of human immunodeficiency virus
(256, 257).

Aggregatibacter actinomycetemcomitans and Adolescent
Periodontitis

A. actinomycetemcomitans was originally coisolated with Actino-
myces from actinomycotic lesions (107), and subsequent case re-
ports of patients with infections in a variety of anatomical local-
izations have confirmed this association (258, 259). Among the
Actinomyces species, coisolation of A. actinomycetemcomitans ap-
pears restricted to Actinomyces israelii (260); the molecular basis of
this association is unknown. A. actinomycetemcomitans is also seen
as a cause of infective endocarditis (see above) but has lately at-
tracted attention because of its association with periodontitis
(261–264). Longitudinal cohort studies have confirmed the signif-
icant connection between A. actinomycetemcomitans and the de-
velopment of periodontitis (265–267). Moreover, the association

of a single serotype b clonal lineage (designated the JP2 clone) and
the aggressive form of periodontitis in adolescents has been inves-
tigated (266, 268). The JP2 clone of A. actinomycetemcomitans has
a 530-bp deletion in the promoter region of the leukotoxin gene
operon, which results in significant enhancement of leukotoxin
production (269). The JP2 clone shows a limited geographical and
ethnic host range, predominating in subjects of Northwestern Af-
rican descent and apparently absent from populations of North-
ern European descent (270–272). Molecular analysis has indicated
that the JP2 clone emerged as a distinct genotype approximately
2,400 years ago, in Mediterranean Africa (273). A 2-year prospec-
tive longitudinal cohort study of Moroccan adolescents who were
initially free of periodontitis linked the JP2 clone of A. actinomy-
cetemcomitans with a very substantial risk of development of peri-
odontitis (266). In carriers with clones other than JP2, the risk was
smaller but still attained statistical significance. Adolescent perio-
dontitis is linked with non-JP2 strains in a widely different geo-
graphical and ethnic host range, but with a significantly lower
relative risk than that observed for the JP2 clone (265, 270, 274–
276).

Aggregatibacter aphrophilus and Brain Abscesses

A. aphrophilus is recovered frequently from supragingival plaque
and saliva but constitutes only a small part of the subgingival
microflora in health and periodontal disease (277). Infective en-
docarditis (see above) and cerebral abscesses are the most frequent
invasive A. aphrophilus infections (278, 279), but epidural ab-
scesses and intervertebral infections have also been reported (280–
282).

Observations linking the bacterium with infections of the cen-
tral nervous system anteceded the description of the species: strain
ATCC 7901, isolated in 1932 from the spinal fluid of a child with a
brain abscess, was deposited by Margaret Pittman as a represen-
tative of H. parainfluenzae (283) but was later identified as a V-
factor-dependent isolate of A. aphrophilus (8, 284). In the 1960s,
King and Tatum characterized invasive strains referred to the
CDC during a 10-year period and noticed that 10 of 34 strains of
Haemophilus aphrophilus (V-factor-independent isolates of A.
aphrophilus) originated from brain abscesses, in marked contrast
to none of 33 strains of A. actinomycetemcomitans (122). When
bacteria from intracranial abscesses are identified to the species
level, A. aphrophilus generally accounts for 2 to 7% of cultivable
bacteria (285–288). Recent studies have attempted metagenomic
analyses of bacterial species in brain abscesses by cloning and se-
quencing of PCR-amplified 16S rRNA genes (285, 289). One study
cultured 36 bacteria from 30 of 51 specimens, including three
isolates of A. aphrophilus, while 16S rRNA gene cloning and se-
quencing increased the number of patients with microbiologic
detections to 39, including two additional patients with A. aphro-
philus DNA; in total, 5 of 51 patients with brain abscess were
positive for A. aphrophilus by culture and/or PCR (285). The fre-
quent culture of A. aphrophilus from brain abscesses is dispropor-
tional to its presence among pharyngeal Haemophilus and Aggre-
gatibacter species and among the total cultivable floras in saliva,
subgingival crevices, and pharyngeal mucosa (277, 290). The spe-
cies thus contains virulence properties enabling a specific associ-
ation with intracranial abscess formation. The genome sequence
of A. aphrophilus was recently published and encodes several pu-
tative virulence factors, including the products of a tight adher-
ence cluster (tad) responsible for expression of long filamentous
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fibrils, the products of a locus required for the assembly of type
IVa pili, and a repertoire of adhesins that may participate in host
colonization and pathogenesis (152).

Aggregatibacter segnis

A. segnis may be difficult or impossible to distinguish from H.
parainfluenzae biotype V by phenotypic means. Although it is a
well-known but rare cause of infective endocarditis (see above),
the true prevalence of this bacterium in human infections is prob-
ably underreported. One study identified all isolates of Haemophi-
lus cultured from blood from a single hospital by 16S rRNA gene
sequencing and found 3 A. segnis isolates among 25 Haemophilus
spp. cultured from 25 patients during a 7-year period (the others
were 17 H. influenzae, 3 A. aphrophilus, and 2 H. parainfluenzae
isolates) (247). Bacteremia with H. parainfluenzae and Aggregati-
bacter spp. affected adult patients with underlying diseases (247).
Using a culture-independent molecular approach to analyze the
microbiota of the oral cavity and the lungs of patients with venti-
lator-associated pneumonia, A. segnis was detected in the lung
samples, a finding that has not been reported previously with cul-
ture-based methods (291).

CONCLUSIONS

With the disappearance of childhood H. influenzae serotype b
meningitis in countries with effectual Hib vaccination, focus in
the clinical microbiology laboratory has shifted somewhat, from
the rapid detection of the bacterium from normally sterile body
fluids to accurate identification of H. influenzae in specimens with
concurrent growth of other bacteria. It has become clear that
widely used methods are not always able to differentiate strains of
H. influenzae reliably from H. haemolyticus and related organisms,
and this has important implications for the clinical laboratory.
Interpretation of the literature on respiratory tract colonization
and infection by H. influenzae must be made with this important
limitation in mind, as it can be expected that 15 to 20% of H.
influenzae nasopharyngeal isolates from healthy volunteers will be
identified erroneously by standard phenotypic tests. Due to the
limited pathogenicity of H. haemolyticus and related organisms,
the proportion of misidentified strains is significantly lower in
clinical samples; however, a misidentification rate of 0.5 to 2%
must be expected even among invasive strains.

A simple method to reliably distinguish H. influenzae from H.
haemolyticus is not available. As there is evidence of recombinato-
rial transfer between the two species (292), which may even in-
volve rRNA genes (153), no single gene can be expected to com-
pletely differentiate H. influenzae from its close relatives of minor
pathogenic importance. The presence of fucK and conserved nu-
cleotide motifs in hpd and iga, plus the absence of sodC, are typical
for H. influenzae, while the opposite genotype is expected for H.
haemolyticus and related organisms. These four traits can be de-
termined by PCR on selected invasive isolates or for research pur-
poses. However, some strains will exhibit a mixed genotype and
must be identified finally by sequencing. A near-full-length 16S
rRNA gene sequence or a multilocus sequence analysis of house-
keeping genes is recommended.

In the near future, a large number of genomes from H. influ-
enzae, H. haemolyticus, and related organisms will be available for
analysis. Comparisons of core genomes and of total genomic con-
tents will constitute a powerful data set for assessment of species
boundaries. If an evolutionary continuum is revealed between H.

influenzae and H. haemolyticus, a pragmatic approach to species
delineation may be necessary. The insight gained from such stud-
ies will have great importance for the development of assays to
distinguish H. influenzae from closely related species.

With the exception of H. paraphrohaemolyticus, the remaining
four species of the H. parainfluenzae group and the three species of
Aggregatibacter can be identified by phenotypic tests, although
extensive characterization and expertise not readily available in
most clinical laboratories are required. These species can also be
identified accurately by 16S rRNA sequencing or by housekeeping
gene sequencing using a multilocus approach. The delineation of
H. paraphrohaemolyticus is not clear at present.

MALDI-TOF mass spectrometry is likely to have a profound
effect on the workflow and results of the clinical microbiology
laboratory. The technique is in an early stage, and identification
algorithms and databases are continually being improved and re-
fined. The limitations of mass spectrometry identification of Hae-
mophilus and Aggregatibacter species are not known at present.
Current identification algorithms recognize patterns of promi-
nent proteins, which is adequate for the distinction of a very large
number of bacterial species. Future improvements will probably
incorporate algorithms making use of less prominent but taxo-
nomically important peptide peaks. Whether mass spectrometry
can be improved sufficiently to reliably distinguish H. influenzae
from closely related species remains to be seen. It is clear that this
method is capable of identifying many of the rare species of Hae-
mophilus and Aggregatibacter at low cost and high speed. These
species will therefore be identified more frequently from infec-
tions, which will increase our knowledge of their clinical signifi-
cance.

The expansion and reorganization of the family Pasteurellaceae
have been extensive. The family increased from 3 genera in 1995 to
18 genera in 2012, but most of these genera will not be found in
clinical specimens unless they are incidentally introduced by ani-
mal bites or licks. Renaming of species originally defined by se-
lected phenotypic traits has not necessarily come to an end. While
the classification of species in the genus Aggregatibacter has
reached a satisfying state by current standards, the phylogenetic
position of H. ducreyi in the genus Haemophilus is not obvious,
and this argument may even be extended to the H. parainfluenzae
group (38). The ambition of a classification that reflects phylogeny
can conflict with one of the principles of nomenclature, i.e., the
stability of names. Some of these species are regularly encountered
in clinical microbiology laboratories as causes of serious infec-
tions. A renaming may cause difficulties for health care workers,
and misunderstandings can be dangerous. An eventual reclassifi-
cation must be based on comprehensive analyses, and a conserva-
tive approach is presumably beneficial. The near future will see an
overwhelming amount of genomic data that will require time to
systematize, and even more time to interpret. If reclassification of
familiar Haemophilus species at some time has to be considered,
perhaps the methods of the clinical microbiology laboratory will
then have evolved toward recognition of DNA sequences and pro-
tein patterns, and these methods, in contrast to selected pheno-
typic traits, are more inclined to match and benefit from a natural
classification.
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